Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Early Transformers: A study on Efficient Training of Transformer Models through Early-Bird Lottery Tickets (2405.02353v1)

Published 2 May 2024 in cs.CL and cs.LG

Abstract: The training of Transformer models has revolutionized natural language processing and computer vision, but it remains a resource-intensive and time-consuming process. This paper investigates the applicability of the early-bird ticket hypothesis to optimize the training efficiency of Transformer models. We propose a methodology that combines iterative pruning, masked distance calculation, and selective retraining to identify early-bird tickets in various Transformer architectures, including ViT, Swin-T, GPT-2, and RoBERTa. Our experimental results demonstrate that early-bird tickets can be consistently found within the first few epochs of training or fine-tuning, enabling significant resource optimization without compromising performance. The pruned models obtained from early-bird tickets achieve comparable or even superior accuracy to their unpruned counterparts while substantially reducing memory usage. Furthermore, our comparative analysis highlights the generalizability of the early-bird ticket phenomenon across different Transformer models and tasks. This research contributes to the development of efficient training strategies for Transformer models, making them more accessible and resource-friendly. By leveraging early-bird tickets, practitioners can accelerate the progress of natural language processing and computer vision applications while reducing the computational burden associated with training Transformer models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube