Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Attribution in Scientific Literature: New Benchmark and Methods (2405.02228v3)

Published 3 May 2024 in cs.CL, cs.AI, and cs.IR

Abstract: LLMs present a promising yet challenging frontier for automated source citation in scientific communication. Previous approaches to citation generation have been limited by citation ambiguity and LLM overgeneralization. We introduce REASONS, a novel dataset with sentence-level annotations across 12 scientific domains from arXiv. Our evaluation framework covers two key citation scenarios: indirect queries (matching sentences to paper titles) and direct queries (author attribution), both enhanced with contextual metadata. We conduct extensive experiments with models such as GPT-O1, GPT-4O, GPT-3.5, DeepSeek, and other smaller models like Perplexity AI (7B). While top-tier LLMs achieve high performance in sentence attribution, they struggle with high hallucination rates, a key metric for scientific reliability. Our metadata-augmented approach reduces hallucination rates across all tasks, offering a promising direction for improvement. Retrieval-augmented generation (RAG) with Mistral improves performance in indirect queries, reducing hallucination rates by 42% and maintaining competitive precision with larger models. However, adversarial testing highlights challenges in linking paper titles to abstracts, revealing fundamental limitations in current LLMs. REASONS provides a challenging benchmark for developing reliable and trustworthy LLMs in scientific applications

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: