Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Automated Control Logic Test Case Generation using Large Language Models (2405.01874v1)

Published 3 May 2024 in cs.SE

Abstract: Testing PLC and DCS control logic in industrial automation is laborious and challenging since appropriate test cases are often complex and difficult to formulate. Researchers have previously proposed several automated test case generation approaches for PLC software applying symbolic execution and search-based techniques. Often requiring formal specifications and performing a mechanical analysis of programs, these approaches may uncover specific programming errors but sometimes suffer from state space explosion and cannot process rather informal specifications. We proposed a novel approach for the automatic generation of PLC test cases that queries a LLM to synthesize test cases for code provided in a prompt. Experiments with ten open-source function blocks from the OSCAT automation library showed that the approach is fast, easy to use, and can yield test cases with high statement coverage for low-to-medium complex programs. However, we also found that LLM-generated test cases suffer from erroneous assertions in many cases, which still require manual adaption.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.