Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Closing the Gap: Achieving Global Convergence (Last Iterate) of Actor-Critic under Markovian Sampling with Neural Network Parametrization (2405.01843v5)

Published 3 May 2024 in cs.LG and cs.AI

Abstract: The current state-of-the-art theoretical analysis of Actor-Critic (AC) algorithms significantly lags in addressing the practical aspects of AC implementations. This crucial gap needs bridging to bring the analysis in line with practical implementations of AC. To address this, we advocate for considering the MMCLG criteria: \textbf{M}ulti-layer neural network parametrization for actor/critic, \textbf{M}arkovian sampling, \textbf{C}ontinuous state-action spaces, the performance of the \textbf{L}ast iterate, and \textbf{G}lobal optimality. These aspects are practically significant and have been largely overlooked in existing theoretical analyses of AC algorithms. In this work, we address these gaps by providing the first comprehensive theoretical analysis of AC algorithms that encompasses all five crucial practical aspects (covers MMCLG criteria). We establish global convergence sample complexity bounds of $\tilde{\mathcal{O}}\left({\epsilon{-3}}\right)$. We achieve this result through our novel use of the weak gradient domination property of MDP's and our unique analysis of the error in critic estimation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com