Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving Concept Alignment in Vision-Language Concept Bottleneck Models (2405.01825v2)

Published 3 May 2024 in cs.CV

Abstract: Concept Bottleneck Models (CBM) map images to human-interpretable concepts before making class predictions. Recent approaches automate CBM construction by prompting LLMs to generate text concepts and employing Vision LLMs (VLMs) to score these concepts for CBM training. However, it is desired to build CBMs with concepts defined by human experts rather than LLM-generated ones to make them more trustworthy. In this work, we closely examine the faithfulness of VLM concept scores for such expert-defined concepts in domains like fine-grained bird species and animal classification. Our investigations reveal that VLMs like CLIP often struggle to correctly associate a concept with the corresponding visual input, despite achieving a high classification performance. This misalignment renders the resulting models difficult to interpret and less reliable. To address this issue, we propose a novel Contrastive Semi-Supervised (CSS) learning method that leverages a few labeled concept samples to activate truthful visual concepts and improve concept alignment in the CLIP model. Extensive experiments on three benchmark datasets demonstrate that our method significantly enhances both concept (+29.95) and classification (+3.84) accuracies yet requires only a fraction of human-annotated concept labels. To further improve the classification performance, we introduce a class-level intervention procedure for fine-grained classification problems that identifies the confounding classes and intervenes in their concept space to reduce errors.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com