Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

HateTinyLLM : Hate Speech Detection Using Tiny Large Language Models (2405.01577v1)

Published 26 Apr 2024 in cs.CL and cs.LG

Abstract: Hate speech encompasses verbal, written, or behavioral communication that targets derogatory or discriminatory language against individuals or groups based on sensitive characteristics. Automated hate speech detection plays a crucial role in curbing its propagation, especially across social media platforms. Various methods, including recent advancements in deep learning, have been devised to address this challenge. In this study, we introduce HateTinyLLM, a novel framework based on fine-tuned decoder-only tiny LLMs (tinyLLMs) for efficient hate speech detection. Our experimental findings demonstrate that the fine-tuned HateTinyLLM outperforms the pretrained mixtral-7b model by a significant margin. We explored various tiny LLMs, including PY007/TinyLlama-1.1B-step-50K-105b, Microsoft/phi-2, and facebook/opt-1.3b, and fine-tuned them using LoRA and adapter methods. Our observations indicate that all LoRA-based fine-tuned models achieved over 80\% accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.