Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Software Mention Recognition with a Three-Stage Framework Based on BERTology Models at SOMD 2024 (2405.01575v1)

Published 23 Apr 2024 in cs.SE, cs.AI, and cs.CL

Abstract: This paper describes our systems for the sub-task I in the Software Mention Detection in Scholarly Publications shared-task. We propose three approaches leveraging different pre-trained LLMs (BERT, SciBERT, and XLM-R) to tackle this challenge. Our bestperforming system addresses the named entity recognition (NER) problem through a three-stage framework. (1) Entity Sentence Classification - classifies sentences containing potential software mentions; (2) Entity Extraction - detects mentions within classified sentences; (3) Entity Type Classification - categorizes detected mentions into specific software types. Experiments on the official dataset demonstrate that our three-stage framework achieves competitive performance, surpassing both other participating teams and our alternative approaches. As a result, our framework based on the XLM-R-based model achieves a weighted F1-score of 67.80%, delivering our team the 3rd rank in Sub-task I for the Software Mention Recognition task.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com