Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Experimental Study on the Rashomon Effect of Balancing Methods in Imbalanced Classification (2405.01557v4)

Published 22 Mar 2024 in cs.LG

Abstract: Predictive models may generate biased predictions when classifying imbalanced datasets. This happens when the model favors the majority class, leading to low performance in accurately predicting the minority class. To address this issue, balancing or resampling methods are critical data-centric AI approaches in the modeling process to improve prediction performance. However, there have been debates and questions about the functionality of these methods in recent years. In particular, many candidate models may exhibit very similar predictive performance, called the Rashomon effect, in model selection, and they may even produce different predictions for the same observations. Selecting one of these models without considering the predictive multiplicity -- which is the case of yielding conflicting models' predictions for any sample -- can result in blind selection. In this paper, the impact of balancing methods on predictive multiplicity is examined using the Rashomon effect. It is crucial because the blind model selection in data-centric AI is risky from a set of approximately equally accurate models. This may lead to severe problems in model selection, validation, and explanation. To tackle this matter, we conducted real dataset experiments to observe the impact of balancing methods on predictive multiplicity through the Rashomon effect by using a newly proposed metric obscurity in addition to the existing ones: ambiguity and discrepancy. Our findings showed that balancing methods inflate the predictive multiplicity and yield varying results. To monitor the trade-off between the prediction performance and predictive multiplicity for conducting the modeling process responsibly, we proposed using the extended version of the performance-gain plot when balancing the training data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: