Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Empirical Studies of Parameter Efficient Methods for Large Language Models of Code and Knowledge Transfer to R (2405.01553v2)

Published 16 Mar 2024 in cs.SE and cs.AI

Abstract: Parameter Efficient Fine-Tuning (PEFT) methods are proposed as an alternative fine-tuning approach for LLMs (LLM) to minimize high training costs. While prior research demonstrates the effectiveness of PEFT methods in knowledge transfer using smaller LLMs, their application to larger LLMs, particularly in low-resource and unseen programming languages such as R, remains under-explored. In this work, we evaluate PEFT methods, LoRA, Compacter, and IA3 on LLMs for code summarization and generation, with a particular emphasis on knowledge transfer to R as an unseen under-explored target language. Our experiments reveal that LoRA consistently outperforms Compacter and IA3 in all settings, while Compacter offers significant resource efficiency with minimal performance trade-offs. Additionally, we find that the number of trainable parameters has a greater influence on the functional accuracy of the generated code than PEFT architecture. Our study can direct future research in developing code intelligent tasks for unseen languages including R, as well as the choice of PEFT methods for knowledge transfer, especially when balancing the computational cost and performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: