Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Position: Towards Resilience Against Adversarial Examples (2405.01349v2)

Published 2 May 2024 in cs.LG and cs.CR

Abstract: Current research on defending against adversarial examples focuses primarily on achieving robustness against a single attack type such as $\ell_2$ or $\ell_{\infty}$-bounded attacks. However, the space of possible perturbations is much larger than considered by many existing defenses and is difficult to mathematically model, so the attacker can easily bypass the defense by using a type of attack that is not covered by the defense. In this position paper, we argue that in addition to robustness, we should also aim to develop defense algorithms that are adversarially resilient -- defense algorithms should specify a means to quickly adapt the defended model to be robust against new attacks. We provide a definition of adversarial resilience and outline considerations of designing an adversarially resilient defense. We then introduce a subproblem of adversarial resilience which we call continual adaptive robustness, in which the defender gains knowledge of the formulation of possible perturbation spaces over time and can then update their model based on this information. Additionally, we demonstrate the connection between continual adaptive robustness and previously studied problems of multiattack robustness and unforeseen attack robustness and outline open directions within these fields which can contribute to improving continual adaptive robustness and adversarial resilience.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com