Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards Optimising EEG Decoding using Post-hoc Explanations and Domain Knowledge (2405.01269v1)

Published 2 May 2024 in cs.HC and cs.ET

Abstract: Decoding EEG during motor imagery is pivotal for the Brain-Computer Interface (BCI) system, influencing its overall performance significantly. As end-to-end data-driven learning methods advance, the challenge lies in balancing model complexity with the need for human interpretability and trust. Despite strides in EEG-based BCIs, challenges like artefacts and low signal-to-noise ratio emphasise the ongoing importance of model transparency. This work proposes using post-hoc explanations to interpret model outcomes and validate them against domain knowledge. Leveraging the GradCAM post-hoc explanation technique on the motor imagery dataset, this work demonstrates that relying solely on accuracy metrics may be inadequate to ensure BCI performance and acceptability. A model trained using all EEG channels of the dataset achieves 72.60% accuracy, while a model trained with motor-imagery/movement-relevant channel data has a statistically insignificant decrease of 1.75%. However, the relevant features for both are very different based on neurophysiological facts. This work demonstrates that integrating domain-specific knowledge with XAI techniques emerges as a promising paradigm for validating the neurophysiological basis of model outcomes in BCIs. Our results reveal the significance of neurophysiological validation in evaluating BCI performance, highlighting the potential risks of exclusively relying on performance metrics when selecting models for dependable and transparent BCIs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.