Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A reduced scalar potential approach for magnetostatics avoiding the coenergy (2405.01082v1)

Published 2 May 2024 in math.NA and cs.NA

Abstract: The numerical solution of problems in nonlinear magnetostatics is typically based on a variational formulation in terms of magnetic potentials, the discretization by finite elements, and iterative solvers like the Newton method. The vector potential approach aims at minimizing a certain energy functional and, in three dimensions, requires the use of edge elements and appropriate gauging conditions. The scalar potential approach, on the other hand, seeks to maximize the negative coenergy and can be realized by standard Lagrange finite elements, thus reducing the number of degrees of freedom and simplifying the implementation. The number of Newton iterations required to solve the governing nonlinear system, however, has been observed to be usually higher than for the vector potential formulation. In this paper, we propose a method that combines the advantages of both approaches, i.e., it requires as few Newton iterations as the vector potential formulation while involving the magnetic scalar potential as the primary unknown. We discuss the variational background of the method, its well-posedness, and its efficient implementation. Numerical examples are presented for illustration of the accuracy and the gain in efficiency compared to other approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com