Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fair Recommendations with Limited Sensitive Attributes: A Distributionally Robust Optimization Approach (2405.01063v2)

Published 2 May 2024 in cs.IR, cs.CY, and cs.LG

Abstract: As recommender systems are indispensable in various domains such as job searching and e-commerce, providing equitable recommendations to users with different sensitive attributes becomes an imperative requirement. Prior approaches for enhancing fairness in recommender systems presume the availability of all sensitive attributes, which can be difficult to obtain due to privacy concerns or inadequate means of capturing these attributes. In practice, the efficacy of these approaches is limited, pushing us to investigate ways of promoting fairness with limited sensitive attribute information. Toward this goal, it is important to reconstruct missing sensitive attributes. Nevertheless, reconstruction errors are inevitable due to the complexity of real-world sensitive attribute reconstruction problems and legal regulations. Thus, we pursue fair learning methods that are robust to reconstruction errors. To this end, we propose Distributionally Robust Fair Optimization (DRFO), which minimizes the worst-case unfairness over all potential probability distributions of missing sensitive attributes instead of the reconstructed one to account for the impact of the reconstruction errors. We provide theoretical and empirical evidence to demonstrate that our method can effectively ensure fairness in recommender systems when only limited sensitive attributes are accessible.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com