Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Reed-Solomon Codes over Cyclic Polynomial Ring with Lower Encoding/Decoding Complexity (2405.01043v1)

Published 2 May 2024 in cs.IT and math.IT

Abstract: Reed-Solomon (RS) codes are constructed over a finite field that have been widely employed in storage and communication systems. Many fast encoding/decoding algorithms such as fast Fourier transform (FFT) and modular approach are designed for RS codes to reduce the encoding/decoding complexity defined as the number of XORs involved in the encoding/decoding procedure. In this paper, we present the construction of RS codes over the cyclic polynomial ring $ \mathbb{F}_2[x]/(1+x+\ldots+x{p-1})$ and show that our codes are maximum distance separable (MDS) codes. Moreover, we propose the FFT and modular approach over the ring that can be employed in our codes for encoding/decoding complexity reduction. We show that our codes have 17.9\% encoding complexity reduction and 7.5\% decoding complexity reduction compared with RS codes over finite field, for $(n,k)=(2048,1984)$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.