Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

IntraMix: Intra-Class Mixup Generation for Accurate Labels and Neighbors (2405.00957v2)

Published 2 May 2024 in cs.LG, cs.AI, and cs.SI

Abstract: Graph Neural Networks (GNNs) have shown great performance in various tasks, with the core idea of learning from data labels and aggregating messages within the neighborhood of nodes. However, the common challenges in graphs are twofold: insufficient accurate (high-quality) labels and limited neighbors for nodes, resulting in weak GNNs. Existing graph augmentation methods typically address only one of these challenges, often adding training costs or relying on oversimplified or knowledge-intensive strategies, limiting their generalization. To simultaneously address both challenges faced by graphs in a generalized way, we propose an elegant method called IntraMix. Considering the incompatibility of vanilla Mixup with the complex topology of graphs, IntraMix innovatively employs Mixup among inaccurate labeled data of the same class, generating high-quality labeled data at minimal cost. Additionally, it finds data with high confidence of being clustered into the same group as the generated data to serve as their neighbors, thereby enriching the neighborhoods of graphs. IntraMix efficiently tackles both issues faced by graphs and challenges the prior notion of the limited effectiveness of Mixup in node classification. IntraMix is a theoretically grounded plug-in-play method that can be readily applied to all GNNs. Extensive experiments demonstrate the effectiveness of IntraMix across various GNNs and datasets. Our code is available at: https://github.com/Zhengsh123/IntraMix.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: