Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Evaluating the Application of ChatGPT in Outpatient Triage Guidance: A Comparative Study (2405.00728v1)

Published 27 Apr 2024 in cs.CL, cs.AI, and cs.HC

Abstract: The integration of AI in healthcare presents a transformative potential for enhancing operational efficiency and health outcomes. LLMs, such as ChatGPT, have shown their capabilities in supporting medical decision-making. Embedding LLMs in medical systems is becoming a promising trend in healthcare development. The potential of ChatGPT to address the triage problem in emergency departments has been examined, while few studies have explored its application in outpatient departments. With a focus on streamlining workflows and enhancing efficiency for outpatient triage, this study specifically aims to evaluate the consistency of responses provided by ChatGPT in outpatient guidance, including both within-version response analysis and between-version comparisons. For within-version, the results indicate that the internal response consistency for ChatGPT-4.0 is significantly higher than ChatGPT-3.5 (p=0.03) and both have a moderate consistency (71.2% for 4.0 and 59.6% for 3.5) in their top recommendation. However, the between-version consistency is relatively low (mean consistency score=1.43/3, median=1), indicating few recommendations match between the two versions. Also, only 50% top recommendations match perfectly in the comparisons. Interestingly, ChatGPT-3.5 responses are more likely to be complete than those from ChatGPT-4.0 (p=0.02), suggesting possible differences in information processing and response generation between the two versions. The findings offer insights into AI-assisted outpatient operations, while also facilitating the exploration of potentials and limitations of LLMs in healthcare utilization. Future research may focus on carefully optimizing LLMs and AI integration in healthcare systems based on ergonomic and human factors principles, precisely aligning with the specific needs of effective outpatient triage.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets