Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Data-driven approximation of Koopman operators and generators: Convergence rates and error bounds (2405.00539v2)

Published 1 May 2024 in math.NA, cs.NA, and math.DS

Abstract: Global information about dynamical systems can be extracted by analysing associated infinite-dimensional transfer operators, such as Perron-Frobenius and Koopman operators as well as their infinitesimal generators. In practice, these operators typically need to be approximated from data. Popular approximation methods are extended dynamic mode decomposition (EDMD) and generator extended mode decomposition (gEDMD). We propose a unified framework that leverages Monte Carlo sampling to approximate the operator of interest on a finite-dimensional space spanned by a set of basis functions. Our framework contains EDMD and gEDMD as special cases, but can also be used to approximate more general operators. Our key contributions are proofs of the convergence of the approximating operator and its spectrum under non-restrictive conditions. Moreover, we derive explicit convergence rates and account for the presence of noise in the observations. Whilst all these results are broadly applicable, they also refine previous analyses of EDMD and gEDMD. We verify the analytical results with the aid of several numerical experiments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com