Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Better Bounded Bisimulation Contractions (Preprint) (2405.00480v1)

Published 1 May 2024 in cs.LO

Abstract: Bisimulations are standard in modal logic and, more generally, in the theory of state-transition systems. The quotient structure of a Kripke model with respect to the bisimulation relation is called a bisimulation contraction. The bisimulation contraction is a minimal model bisimilar to the original model, and hence, for (image-)finite models, a minimal model modally equivalent to the original. Similar definitions exist for bounded bisimulations ($k$-bisimulations) and bounded bisimulation contractions. Two finite models are $k$-bisimilar if and only if they are modally equivalent up to modal depth $k$. However, the quotient structure with respect to the $k$-bisimulation relation does not guarantee a minimal model preserving modal equivalence to depth $k$. In this paper, we remedy this asymmetry to standard bisimulations and provide a novel definition of bounded contractions called rooted $k$-contractions. We prove that rooted $k$-contractions preserve $k$-bisimilarity and are minimal with this property. Finally, we show that rooted $k$-contractions can be exponentially more succinct than standard $k$-contractions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: