Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enhancing Credit Card Fraud Detection A Neural Network and SMOTE Integrated Approach (2405.00026v1)

Published 27 Feb 2024 in cs.CE and cs.AI

Abstract: Credit card fraud detection is a critical challenge in the financial sector, demanding sophisticated approaches to accurately identify fraudulent transactions. This research proposes an innovative methodology combining Neural Networks (NN) and Synthet ic Minority Over-sampling Technique (SMOTE) to enhance the detection performance. The study addresses the inherent imbalance in credit card transaction data, focusing on technical advancements for robust and precise fraud detection. Results demonstrat e that the integration of NN and SMOTE exhibits superior precision, recall, and F1-score compared to traditional models, highlighting its potential as an advanced solution for handling imbalanced datasets in credit card fraud detection scenarios. This rese arch contributes to the ongoing efforts to develop effective and efficient mechanisms for safeguarding financial transactions from fraudulent activities.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com