Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time, Travel, and Energy in the Uniform Dispersion Problem (2404.19564v1)

Published 30 Apr 2024 in cs.RO, cs.DM, and cs.MA

Abstract: We investigate the algorithmic problem of uniformly dispersing a swarm of robots in an unknown, gridlike environment. In this setting, our goal is to comprehensively study the relationships between performance metrics and robot capabilities. We introduce a formal model comparing dispersion algorithms based on makespan, traveled distance, energy consumption, sensing, communication, and memory. Using this framework, we classify several uniform dispersion algorithms according to their capability requirements and performance. We prove that while makespan and travel can be minimized in all environments, energy cannot, as long as the swarm's sensing range is bounded. In contrast, we show that energy can be minimized even by simple, ``ant-like" robots in synchronous settings and asymptotically minimized in asynchronous settings, provided the environment is topologically simply connected. Our findings offer insights into fundamental limitations that arise when designing swarm robotics systems for exploring unknown environments, highlighting the impact of environment's topology on the feasibility of energy-efficient dispersion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. E. Şahin, “Swarm robotics: From sources of inspiration to domains of application,” in International workshop on swarm robotics, pp. 10–20, Springer, 2004.
  2. A. Quattrini Li, “Exploration and mapping with groups of robots: Recent trends,” Current Robotics Reports, vol. 1, no. 4, pp. 227–237, 2020.
  3. T.-R. Hsiang, E. M. Arkin, M. A. Bender, S. P. Fekete, and J. S. Mitchell, “Algorithms for rapidly dispersing robot swarms in unknown environments,” in Algorithmic Foundations of Robotics V, pp. 77–93, Springer, 2004.
  4. O. Rappel and J. Ben-Asher, “Area coverage – A swarm based approach,” in 59th Israel Annual Conference on Aerospace Sciences, IACAS 2019, pp. 35–55, Israel Annual Conference on Aerospace Sciences, 2019.
  5. E. M. Barrameda, S. Das, and N. Santoro, “Uniform dispersal of asynchronous finite-state mobile robots in presence of holes,” in International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, pp. 228–243, Springer, 2013.
  6. A. Hideg and T. Lukovszki, “Uniform dispersal of robots with minimum visibility range,” in International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, pp. 155–167, Springer, 2017.
  7. M. Amir and A. M. Bruckstein, “Fast uniform dispersion of a crash-prone swarm.,” Robotics: Science and Systems, 2020.
  8. O. Rappel, M. Amir, and A. M. Bruckstein, “Stigmergy-based, dual-layer coverage of unknown regions,” in Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems, pp. 1439–1447, 2023.
  9. E. M. Barrameda, S. Das, and N. Santoro, “Deployment of asynchronous robotic sensors in unknown orthogonal environments,” in International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, pp. 125–140, Springer, 2008.
  10. E. M. Barrameda, S. Das, and N. Santoro, “Uniform Dispersal of Asynchronous Finite-State Mobile Robots in Presence of Holes,” in Algorithms for Sensor Systems (P. Flocchini, J. Gao, E. Kranakis, and F. Meyer auf der Heide, eds.), vol. 8243, pp. 228–243, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.
  11. A. Howard, M. J. Matarić, and G. S. Sukhatme, “An incremental self-deployment algorithm for mobile sensor networks,” Autonomous Robots, vol. 13, no. 2, pp. 113–126, 2002.
  12. E. D. Demaine, M. Hajiaghayi, H. Mahini, A. S. Sayedi-Roshkhar, S. Oveisgharan, and M. Zadimoghaddam, “Minimizing movement,” ACM Transactions on Algorithms (TALG), vol. 5, no. 3, p. 30, 2009.
  13. Z. Liao, J. Wang, S. Zhang, J. Cao, and G. Min, “Minimizing movement for target coverage and network connectivity in mobile sensor networks,” network, vol. 4, p. 8, 2015.
  14. Z. Friggstad and M. R. Salavatipour, “Minimizing movement in mobile facility location problems,” ACM Transactions on Algorithms (TALG), vol. 7, no. 3, p. 28, 2011.
  15. M. Amir and A. M. Bruckstein, “Minimizing travel in the uniform dispersal problem for robotic sensors,” in Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, International Foundation for Autonomous Agents and Multiagent Systems, 2019.
  16. K. D. Joshi, Introduction to general topology. New Age International, 1983.
  17. Citeseer, 2010.
  18. A. Shats, M. Amir, and N. Agmon, “Competitive ant coverage: The value of pursuit,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6733–6740, IEEE, 2023.
  19. J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chrétien, “The dynamics of collective sorting robot-like ants and ant-like robots,” in From animals to animats: proceedings of the first international conference on simulation of adaptive behavior, pp. 356–365, 1991.
  20. T. Stirling, S. Wischmann, and D. Floreano, “Energy-efficient indoor search by swarms of simulated flying robots without global information,” Swarm Intelligence, vol. 4, no. 2, pp. 117–143, 2010.
  21. T. Stirling and D. Floreano, “Energy-Time Efficiency in Aerial Swarm Deployment,” in Distributed Autonomous Robotic Systems (A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, M. A. Hsieh, L. E. Parker, and K. Støy, eds.), vol. 83, pp. 5–18, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
  22. M. Prähofer and H. Spohn, “Current fluctuations for the totally asymmetric simple exclusion process,” in In and out of equilibrium, pp. 185–204, Springer, 2002.
  23. C. A. Tracy and H. Widom, “Asymptotics in asep with step initial condition,” Communications in Mathematical Physics, vol. 290, no. 1, pp. 129–154, 2009.
  24. K. Johansson, “Shape fluctuations and random matrices,” Communications in Mathematical Physics, vol. 209, pp. 437–476, feb 2000.
  25. D. Peleg, “Distributed Coordination Algorithms for Mobile Robot Swarms: New Directions and Challenges,” in Distributed Computing – IWDC 2005, pp. 1–12, Springer, Berlin, Heidelberg, Dec. 2005.
  26. J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,” IEEE Transactions on Robotics and Automation, vol. 20, pp. 243–255, Apr. 2004.
  27. V. P. Tran, M. A. Garratt, K. Kasmarik, and S. G. Anavatti, “Robust multi-robot coverage of unknown environments using a distributed robot swarm,” arXiv preprint arXiv:2111.14295, 2021.
  28. V. P. Tran, M. A. Garratt, K. Kasmarik, and S. G. Anavatti, “Dynamic frontier-led swarming: Multi-robot repeated coverage in dynamic environments,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 3, pp. 646–661, 2023.
  29. E. M. Barrameda, S. Das, and N. Santoro, “Deployment of Asynchronous Robotic Sensors in Unknown Orthogonal Environments,” in Algorithmic Aspects of Wireless Sensor Networks (S. P. Fekete, ed.), vol. 5389, pp. 125–140, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
  30. A. Hideg and L. Blázovics, “Area coverage using distributed randomized methods,” in Cybernetics & Informatics (K&I), 2016, pp. 1–5, IEEE, 2016.
  31. A. Hideg, T. Lukovszki, and B. Forstner, “Improved runtime for the synchronous multi-door filling,” Periodica Polytechnica Electrical Engineering and Computer Science, vol. 66, no. 1, pp. 12–19, 2022.
  32. Ö. Arslan, “Statistical coverage control of mobile sensor networks,” IEEE Transactions on Robotics, vol. 35, no. 4, pp. 889–908, 2019.
  33. D. Rabinovich, M. Amir, and A. M. Bruckstein, “Optimally reordering mobile agents on parallel rows,” Theoretical Computer Science, vol. 985, p. 114330, 2024.
  34. F. Aznar, M. Pujol, R. Rizo, F. A. Pujol, and C. Rizo, “Energy-Efficient Swarm Behavior for Indoor UAV Ad-Hoc Network Deployment,” Symmetry (20738994), vol. 10, p. 632, Nov. 2018. Publisher: MDPI Publishing.
  35. O. Rappel, J. Ben-Asher, and A. Bruckstein, “Exploration of unknown indoor regions by a swarm of energy-constrained drones,” 05 2023.
  36. J. Gielis, A. Shankar, and A. Prorok, “A critical review of communications in multi-robot systems,” Current robotics reports, vol. 3, no. 4, pp. 213–225, 2022.
  37. D. Chowdhury, L. Santen, and A. Schadschneider, “Statistical physics of vehicular traffic and some related systems,” Physics Reports, vol. 329, no. 4-6, pp. 199–329, 2000.
  38. T. Chou, K. Mallick, and R. Zia, “Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport,” Reports on progress in physics, vol. 74, no. 11, p. 116601, 2011.
  39. D. Romik, The surprising mathematics of longest increasing subsequences. No. 4, Cambridge University Press, 2015.
  40. T. Kriecherbauer and J. Krug, “A pedestrian’s view on interacting particle systems, kpz universality and random matrices,” Journal of Physics A: Mathematical and Theoretical, vol. 43, no. 40, p. 403001, 2010.
  41. M. Amir, D. Rabinovich, and A. M. Bruckstein, “Patrolling grids with a bit of memory,” 2023.
  42. R. Diestel, Graph Theory (Graduate Texts in Mathematics). Springer, jun 2017.
  43. J. Krarup and S. Vajda, “On torricelli’s geometrical solution to a problem of fermat,” IMA Journal of Management Mathematics, vol. 8, no. 3, pp. 215–224, 1997.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com