Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A logarithmic approximation of linearly ordered colourings (2404.19556v6)

Published 30 Apr 2024 in math.CO, cs.DM, and cs.DS

Abstract: A linearly ordered (LO) $k$-colouring of a hypergraph assigns to each vertex a colour from the set ${0,1,\ldots,k-1}$ in such a way that each hyperedge has a unique maximum element. Barto, Batistelli, and Berg conjectured that it is NP-hard to find an LO $k$-colouring of an LO 2-colourable 3-uniform hypergraph for any constant $k\geq 2$ [STACS'21] but even the case $k=3$ is still open. Nakajima and \v{Z}ivn\'{y} gave polynomial-time algorithms for finding, given an LO 2-colourable 3-uniform hypergraph, an LO colouring with $O*(\sqrt{n})$ colours [ICALP'22] and an LO colouring with $O*(\sqrt[3]{n})$ colours [ACM ToCT'23]. Very recently, Louis, Newman, and Ray gave an SDP-based algorithm with $O*(\sqrt[5]{n})$ colours [FSTTCS'24]. We present two simple polynomial-time algorithms that find an LO colouring with $O(\log_2(n))$ colours, which is an exponential improvement.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.