Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-hop Question Answering over Knowledge Graphs using Large Language Models (2404.19234v1)

Published 30 Apr 2024 in cs.AI, cs.CL, and cs.DB

Abstract: Knowledge graphs (KGs) are large datasets with specific structures representing large knowledge bases (KB) where each node represents a key entity and relations amongst them are typed edges. Natural language queries formed to extract information from a KB entail starting from specific nodes and reasoning over multiple edges of the corresponding KG to arrive at the correct set of answer nodes. Traditional approaches of question answering on KG are based on (a) semantic parsing (SP), where a logical form (e.g., S-expression, SPARQL query, etc.) is generated using node and edge embeddings and then reasoning over these representations or tuning LLMs to generate the final answer directly, or (b) information-retrieval based that works by extracting entities and relations sequentially. In this work, we evaluate the capability of (LLMs) to answer questions over KG that involve multiple hops. We show that depending upon the size and nature of the KG we need different approaches to extract and feed the relevant information to an LLM since every LLM comes with a fixed context window. We evaluate our approach on six KGs with and without the availability of example-specific sub-graphs and show that both the IR and SP-based methods can be adopted by LLMs resulting in an extremely competitive performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 10 likes.

Upgrade to Pro to view all of the tweets about this paper: