Learning Sparse High-Dimensional Matrix-Valued Graphical Models From Dependent Data (2404.19073v1)
Abstract: We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional, stationary matrix-variate Gaussian time series. All past work on high-dimensional matrix graphical models assumes that independent and identically distributed (i.i.d.) observations of the matrix-variate are available. Here we allow dependent observations. We consider a sparse-group lasso-based frequency-domain formulation of the problem with a Kronecker-decomposable power spectral density (PSD), and solve it via an alternating direction method of multipliers (ADMM) approach. The problem is bi-convex which is solved via flip-flop optimization. We provide sufficient conditions for local convergence in the Frobenius norm of the inverse PSD estimators to the true value. This result also yields a rate of convergence. We illustrate our approach using numerical examples utilizing both synthetic and real data.
- N. Meinshausen and P. Bühlmann, “High-dimensional graphs and variable selection with the Lasso,” Ann. Statist., vol. 34, no. 3, pp. 1436-1462, 2006.
- O. Banerjee, L.E. Ghaoui and A. d’Aspremont, “Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data,” J. Mach. Learn. Res., vol. 9, pp. 485-516, 2008.
- J. Friedman, T. Hastie and R. Tibshirani, “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432-441, July 2008.
- R. Dahlhaus, “Graphical interaction models for multivariate time series,” Metrika, vol. 51, pp. 157-172, 2000.
- A. Jung, G. Hannak and N. Goertz, “Graphical LASSO based model selection for time series,” IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1781-1785, Oct. 2015.
- J.K. Tugnait, “Graphical modeling of high-dimensional time series,” in Proc. 52nd Asilomar Conf. Signals, Systems, Computers, pp. 840-844, Pacific Grove, CA, Oct. 29 - Oct. 31, 2018.
- J.K. Tugnait, “On sparse high-dimensional graphical model learning for dependent time series,” Signal Process., vol. 197, pp. 1-18, Aug. 2022, Article 108539.
- E. Avventi, A. Lindquist, and B. Wahlberg, “ARMA identification of graphical models,” IEEE Trans. Autom. Control, vol. 58, no. 5, pp. 1167-1178, 2013.
- M. Zorzi and R. Sepulchre, “AR identification of latent-variable graphical models,” IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2327-2340, 2016.
- D. Alpago, M. Zorzi and A. Ferrante, “Identification of sparse reciprocal graphical models,” IEEE Control Sys. Lett., vol. 22, no. 4, pp. 659-664, 2018.
- J. Songsiri and L. Vandenberghe, “Topology selection in graphical models of autoregressive processes,” J. Mach. Learn. Res., vol. 11, pp. 2671-2705, Oct. 2010.
- V. Ciccone, A. Ferrante and M. Zorzi, “Learning latent variable dynamic graphical models by confidence sets selection,” IEEE Trans. Autom. Control, vol. 65, no. 12, pp. 5130-5143, Dec. 2020.
- D. Alpago, M. Zorzi and A. Ferrante, “Data-driven link prediction over graphical models,” IEEE Trans. Autom. Control, vol. 68, no. 4, pp. 2215-2228, Apr. 2023.
- S. Basu and G. Michailidis, “Regularized estimation in sparse high-dimensional time series models,” Annals Statist., vol. 43, no. 4, pp. 1535-1567, 2015.
- C. Leng and C.Y. Tang, “Sparse matrix graphical models,” J. Amer. Statist. Assoc., vol. 107, pp. 1187-1200, Sep. 2012.
- T. Tsiligkaridis, A.O. Hero, III, and S. Zhou, “On convergence of Kronecker graphical lasso algorithms,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1743-1755, April 2013.
- Y. Zhu and L. Li, “Multiple matrix Gaussian graphs estimation,” J. Royal Statistical Soc., Series B, vol. 80, pp. 927-950, 2018.
- X. Chen and W. Liu, “Graph estimation for matrix-variate Gaussian data,” Statistica Sinica, vol. 29, pp. 479-504, 2019.
- K. Greenewald, S. Zhou and A. Hero III, “Tensor graphical lasso (teralasso),” J. Royal Statistical Soc., Series B, vol. 81, no. 5, pp. 901-931, 2019.
- X. Lyu, W.W. Sun, Z. Wang, H. Liu, J. Yang and G. Cheng, “Tensor graphical model: Non-convex optimization and statistical inference," IEEE Trans. Pattern Analysis Mach. Intell., vol. 42, no. 8, pp. 2024-2037, 1 Aug. 2020.
- F. Huang and S. Chen, “Joint learning of multiple sparse matrix Gaussian graphical models," IEEE Trans. Neural Netw. Learning Sys., vol. 26, no. 11, pp. 2606-2620, Nov. 2015.
- S. Zhou, “Gemini: Graph estimation with matrix variate normal instances,” Annals Statist., vol. 42, no. 2, pp. 532-562, 2014.
- J. Yin and H. Li, “Model selection and estimation in the matrix normal graphical model,” J. Multivariate Analysis, vol. 107, pp. 119-140, May 2012.
- S. He, J. Yin, H. Li and X. Wang, “Graphical model selection and estimation for high dimensional tensor data,” J. Multivariate Analysis, vol. 128, pp. 165-185, 2014.
- K. Min, Q. Mai and X. Zhang, “Fast and separable estimation in high-dimensional tensor Gaussian graphical models,” J. Comp. Graphical Statistics, vol. 31, pp. 294-300, 2022.
- K. Werner, M. Jansson and P. Stoica, “On estimation of covariance matrices with Kronecker product structure,” IEEE Trans. Signal Process., vol. 56, no. 2, pp. 478-491, Feb. 2008.
- P.M. Weichsel, “The Kronecker product of graphs,” Proc. American Math. Soc., vol. 13, no. 1, pp. 37-52, 1962.
- J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker graphs: An approach to modeling networks,” J. Mach. Learn. Res., vol. 11, pp. 985-1042, Feb. 2010.
- C.M. Carvalho and M. West, “Dynamic matrix-variate graphical models,” Bayesian Analysis, vol. 2, no. 1, pp. 69-98, 2007.
- H. Wang and M. West, “Bayesian analysis of matrix normal graphical models,” Biometrika, vol. 96, no. 4, pp. 821-834, Dec. 2009.
- Y. Jiang, J. Bigot and S. Maabout, “Online graph topology learning from matrix-valued time series,” arXiv:2107.08020v1 [stat.ML], July 2021.
- M. Zorzi, “Nonparametric identification of Kronecker networks,” Automatica, vol. 145, no. 9, p. 110518, Nov. 2022.
- B. Sinquin and M. Verhaegen, “Quarks: Identification of large-scale Kronecker vector-autoregressive models,” IEEE Trans. Autom. Control, vol. 64, no. 3, pp. 448-463, 2019.
- M. Zorzi, “Autoregressive identification of Kronecker graphical models,” Automatica, vol. 119, no. 9, p. 109053, Sep. 2020.
- R. Chen, H. Xiao and D. Yang, “Autoregressive models for matrix-valued time series,” J. Econometrics, vol. 222, pp. 539-560, 2021.
- J.K. Tugnait, “Sparse high-dimensional matrix-valued graphical model learning from dependent data,” in Proc. 22nd IEEE Statistical Signal Proc. Workshop (SSP-2023), pp. 344-348, Hanoi, Vietnam, July 2-5, 2023.
- J.K. Tugnait, “Sparse-group lasso for graph learning from multi-attribute data,” IEEE Trans. Signal Process., vol. 69, pp. 1771-1786, 2021. (Corrections: vol. 69, p. 4758, 2021.)
- A.J. Rothman, P.J. Bickel, E. Levina and J. Zhu, “Sparse permutation invariant covariance estimation,” Elec. J. Statistics, vol. 2, pp. 494-515, 2008.
- J.K. Tugnait, “Edge exclusion tests for graphical model selection: Complex Gaussian vectors and time series,” IEEE Trans. Signal Process., vol. 67, no. 19, pp. 5062-5077, Oct. 1, 2019.
- J. Friedman, T. Hastie and R. Tibshirani, “A note on the group lasso and a sparse group lasso,” arXiv:1001.0736v1 [math.ST], 5 Jan 2010.
- N. Simon, J. Friedman, T. Hastie and R. Tibshirani, “A sparse-group lasso,” J. Comp. Graphical Statistics, vol. 22, pp. 231-245, 2013.
- M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,” J. Royal Statistical Soc., Series B, vol. 68, pp. 49-67, 2006.
- J. Gorski, F. Pfeuffer and K. Klamroth, “Biconvex sets and optimization with biconvex functions: A survey and extensions,” Math. Methods Operations Res., vol. 66, pp. 373-408, 2007.
- S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122, 2010.
- S. Zhang, B. Guo, A. Dong, J. He, Z. Xu and S.X. Chen, “Cautionary tales on air-quality improvement in Beijing,” Proc. Royal Soc. A, vol. 473, p. 20170457, 2017.
- W. Chen, F. Wang, G. Xiao, J. Wu and S. Zhang, “Air quality of Beijing and impacts of the new ambient air quality standard,” Atmosphere, vol. 6, pp. 1243-1258, 2015.
- J. Fan, Y. Feng and Y. Wu, “Network exploration via the adaptive lasso and SCAD penalties,” Annals Applied Statistics, vol. 3, no. 2, pp. 521-541, 2009.
- J.K. Tugnait, “Sparse-group log-sum penalized graphical model learning for time series,” in Proc. 2022 IEEE Intern. Conf. Acoustics, Speech, Signal Process. (ICASSP 2022), pp. 5822-5826, Singapore, May 22-27, 2022.
- Jitendra K Tugnait (8 papers)