Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Finite Element Approximation of the Fractional Porous Medium Equation (2404.18901v1)

Published 29 Apr 2024 in math.NA, cs.NA, and math.AP

Abstract: We construct a finite element method for the numerical solution of a fractional porous medium equation on a bounded open Lipschitz polytopal domain $\Omega \subset \mathbb{R}{d}$, where $d = 2$ or $3$. The pressure in the model is defined as the solution of a fractional Poisson equation, involving the fractional Neumann Laplacian in terms of its spectral definition. We perform a rigorous passage to the limit as the spatial and temporal discretization parameters tend to zero and show that a subsequence of the sequence of finite element approximations defined by the proposed numerical method converges to a bounded and nonnegative weak solution of the initial-boundary-value problem under consideration. This result can be therefore viewed as a constructive proof of the existence of a nonnegative, energy-dissipative, weak solution to the initial-boundary-value problem for the fractional porous medium equation under consideration, based on the Neumann Laplacian. The convergence proof relies on results concerning the finite element approximation of the spectral fractional Laplacian and compactness techniques for nonlinear partial differential equations, together with properties of the equation, which are shown to be inherited by the numerical method. We also prove that the total energy associated with the problem under consideration exhibits exponential decay in time.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com