Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

CVTN: Cross Variable and Temporal Integration for Time Series Forecasting (2404.18730v1)

Published 29 Apr 2024 in cs.LG, cs.AI, and stat.AP

Abstract: In multivariate time series forecasting, the Transformer architecture encounters two significant challenges: effectively mining features from historical sequences and avoiding overfitting during the learning of temporal dependencies. To tackle these challenges, this paper deconstructs time series forecasting into the learning of historical sequences and prediction sequences, introducing the Cross-Variable and Time Network (CVTN). This unique method divides multivariate time series forecasting into two phases: cross-variable learning for effectively mining fea tures from historical sequences, and cross-time learning to capture the temporal dependencies of prediction sequences. Separating these two phases helps avoid the impact of overfitting in cross-time learning on cross-variable learning. Exten sive experiments on various real-world datasets have confirmed its state-of-the-art (SOTA) performance. CVTN emphasizes three key dimensions in time series fore casting: the short-term and long-term nature of time series (locality and longevity), feature mining from both historical and prediction sequences, and the integration of cross-variable and cross-time learning. This approach not only advances the current state of time series forecasting but also provides a more comprehensive framework for future research in this field.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.