Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Testing $C_k$-freeness in bounded-arboricity graphs (2404.18126v1)

Published 28 Apr 2024 in cs.DS

Abstract: We study the problem of testing $C_k$-freeness ($k$-cycle-freeness) for fixed constant $k > 3$ in graphs with bounded arboricity (but unbounded degrees). In particular, we are interested in one-sided error algorithms, so that they must detect a copy of $C_k$ with high constant probability when the graph is $\epsilon$-far from $C_k$-free. We next state our results for constant arboricity and constant $\epsilon$ with a focus on the dependence on the number of graph vertices, $n$. The query complexity of all our algorithms grows polynomially with $1/\epsilon$. (1) As opposed to the case of $k=3$, where the complexity of testing $C_3$-freeness grows with the arboricity of the graph but not with the size of the graph (Levi, ICALP 2021) this is no longer the case already for $k=4$. We show that $\Omega(n{1/4})$ queries are necessary for testing $C_4$-freeness, and that $\widetilde{O}(n{1/4})$ are sufficient. The same bounds hold for $C_5$. (2) For every fixed $k \geq 6$, any one-sided error algorithm for testing $C_k$-freeness must perform $\Omega(n{1/3})$ queries. (3) For $k=6$ we give a testing algorithm whose query complexity is $\widetilde{O}(n{1/2})$. (4) For any fixed $k$, the query complexity of testing $C_k$-freeness is upper bounded by ${O}(n{1-1/\lfloor k/2\rfloor})$. Our $\Omega(n{1/4})$ lower bound for testing $C_4$-freeness in constant arboricity graphs provides a negative answer to an open problem posed by (Goldreich, 2021).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: