Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis (2404.17960v1)

Published 27 Apr 2024 in cs.CR and cs.LG

Abstract: Cybersecurity is one of the global issues because of the extensive dependence on cyber systems of individuals, industries, and organizations. Among the cyber attacks, phishing is increasing tremendously and affecting the global economy. Therefore, this phenomenon highlights the vital need for enhancing user awareness and robust support at both individual and organizational levels. Phishing URL identification is the best way to address the problem. Various machine learning and deep learning methods have been proposed to automate the detection of phishing URLs. However, these approaches often need more convincing accuracy and rely on datasets consisting of limited samples. Furthermore, these black box intelligent models decision to detect suspicious URLs needs proper explanation to understand the features affecting the output. To address the issues, we propose a 1D Convolutional Neural Network (CNN) and trained the model with extensive features and a substantial amount of data. The proposed model outperforms existing works by attaining an accuracy of 99.85%. Additionally, our explainability analysis highlights certain features that significantly contribute to identifying the phishing URL.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube