Papers
Topics
Authors
Recent
2000 character limit reached

Critical Review for One-class Classification: recent advances and the reality behind them (2404.17931v1)

Published 27 Apr 2024 in cs.LG and cs.CV

Abstract: This paper offers a comprehensive review of one-class classification (OCC), examining the technologies and methodologies employed in its implementation. It delves into various approaches utilized for OCC across diverse data types, such as feature data, image, video, time series, and others. Through a systematic review, this paper synthesizes promi-nent strategies used in OCC from its inception to its current advance-ments, with a particular emphasis on the promising application. Moreo-ver, the article criticizes the state-of-the-art (SOTA) image anomaly de-tection (AD) algorithms dominating one-class experiments. These algo-rithms include outlier exposure (binary classification) and pretrained model (multi-class classification), conflicting with the fundamental con-cept of learning from one class. Our investigation reveals that the top nine algorithms for one-class CIFAR10 benchmark are not OCC. We ar-gue that binary/multi-class classification algorithms should not be com-pared with OCC.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.