Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Shared learning of powertrain control policies for vehicle fleets (2404.17892v1)

Published 27 Apr 2024 in eess.SY, cs.AI, cs.LG, and cs.SY

Abstract: Emerging data-driven approaches, such as deep reinforcement learning (DRL), aim at on-the-field learning of powertrain control policies that optimize fuel economy and other performance metrics. Indeed, they have shown great potential in this regard for individual vehicles on specific routes or drive cycles. However, for fleets of vehicles that must service a distribution of routes, DRL approaches struggle with learning stability issues that result in high variances and challenge their practical deployment. In this paper, we present a novel framework for shared learning among a fleet of vehicles through the use of a distilled group policy as the knowledge sharing mechanism for the policy learning computations at each vehicle. We detail the mathematical formulation that makes this possible. Several scenarios are considered to analyze the functionality, performance, and computational scalability of the framework with fleet size. Comparisons of the cumulative performance of fleets using our proposed shared learning approach with a baseline of individual learning agents and another state-of-the-art approach with a centralized learner show clear advantages to our approach. For example, we find a fleet average asymptotic improvement of 8.5 percent in fuel economy compared to the baseline while also improving on the metrics of acceleration error and shifting frequency for fleets serving a distribution of suburban routes. Furthermore, we include demonstrative results that show how the framework reduces variance within a fleet and also how it helps individual agents adapt better to new routes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.