Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalization capabilities and robustness of hybrid models grounded in physics compared to purely deep learning models (2404.17884v4)

Published 27 Apr 2024 in physics.flu-dyn and cs.LG

Abstract: This study investigates the generalization capabilities and robustness of purely deep learning (DL) models and hybrid models based on physical principles in fluid dynamics applications, specifically focusing on iteratively forecasting the temporal evolution of flow dynamics. Three autoregressive models were compared: a hybrid model (POD-DL) that combines proper orthogonal decomposition (POD) with a long-short term memory (LSTM) layer, a convolutional autoencoder combined with a convolutional LSTM (ConvLSTM) layer and a variational autoencoder (VAE) combined with a ConvLSTM layer. These models were tested on two high-dimensional, nonlinear datasets representing the velocity field of flow past a circular cylinder in both laminar and turbulent regimes. The study used latent dimension methods, enabling a bijective reduction of high-dimensional dynamics into a lower-order space to facilitate future predictions. While the VAE and ConvLSTM models accurately predicted laminar flow, the hybrid POD-DL model outperformed the others across both laminar and turbulent flow regimes. This success is attributed to the model's ability to incorporate modal decomposition, reducing the dimensionality of the data, by a non-parametric method, and simplifying the forecasting component. By leveraging POD, the model not only gained insight into the underlying physics, improving prediction accuracy with less training data, but also reduce the number of trainable parameters as POD is non-parametric. The findings emphasize the potential of hybrid models, particularly those integrating modal decomposition and deep learning, in predicting complex flow dynamics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.