Papers
Topics
Authors
Recent
2000 character limit reached

Low Cost Machine Vision for Insect Classification (2404.17488v1)

Published 26 Apr 2024 in cs.CV and cs.LG

Abstract: Preserving the number and diversity of insects is one of our society's most important goals in the area of environmental sustainability. A prerequisite for this is a systematic and up-scaled monitoring in order to detect correlations and identify countermeasures. Therefore, automatized monitoring using live traps is important, but so far there is no system that provides image data of sufficient detailed information for entomological classification. In this work, we present an imaging method as part of a multisensor system developed as a low-cost, scalable, open-source system that is adaptable to classical trap types. The image quality meets the requirements needed for classification in the taxonomic tree. Therefore, illumination and resolution have been optimized and motion artefacts have been suppressed. The system is evaluated exemplarily on a dataset consisting of 16 insect species of the same as well as different genus, family and order. We demonstrate that standard CNN-architectures like ResNet50 (pretrained on iNaturalist data) or MobileNet perform very well for the prediction task after re-training. Smaller custom made CNNs also lead to promising results. Classification accuracy of $>96\%$ has been achieved. Moreover, it was proved that image cropping of insects is necessary for classification of species with high inter-class similarity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.