Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Establishing best practices for modeling long duration energy storage in deeply decarbonized energy systems (2404.17474v1)

Published 26 Apr 2024 in eess.SY, cs.SY, and math.OC

Abstract: Long duration energy storage (LDES) may become a critical technology for the decarbonization of the power sector, as current commercially available Li-ion battery storage technologies cannot cost-effectively shift energy to address multi-day or seasonal variability in demand and renewable energy availability. LDES is difficult to model in existing energy system planning models (such as electricity system capacity expansion models), as it is much more dependent on an accurate representation of chronology than other resources. Techniques exist for modeling LDES in these planning models; however, it is not known how spatial and temporal resolution affect the performance of these techniques, creating a research gap. In this study we examine what spatial and temporal resolution is necessarily to accurately capture the full value of LDES, in the context of a continent-scale capacity expansion model. We use the results to draw conclusions and present best practices for modelers seeking to accurately model LDES in a macro-energy systems planning context. Our key findings are: 1) modeling LDES with linked representative periods is crucial to capturing its full value, 2) LDES value is highly sensitive to the cost and availability of other resources, and 3) temporal resolution is more important than spatial resolution for capturing the full value of LDES, although how much temporal resolution is needed will depend on the specific model context.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. doi:10.1016/j.apenergy.2020.115390. URL https://www.sciencedirect.com/science/article/pii/S0306261920309028
  2. doi:10.1038/s41560-021-00796-8. URL https://www.nature.com/articles/s41560-021-00796-8
  3. doi:10.1038/s41560-023-01340-6. URL https://www.nature.com/articles/s41560-023-01340-6
  4. doi:10.1088/1748-9326/ac10df. URL https://dx.doi.org/10.1088/1748-9326/ac10df
  5. doi:10.1016/j.apenergy.2018.01.023. URL https://www.sciencedirect.com/science/article/pii/S0306261918300242
  6. doi:10.1029/2020AV000284. URL https://onlinelibrary.wiley.com/doi/abs/10.1029/2020AV000284
  7. doi:10.1088/1748-9326/acacb5. URL https://dx.doi.org/10.1088/1748-9326/acacb5
  8. doi:10.1016/j.egycc.2023.100107. URL https://www.sciencedirect.com/science/article/pii/S2666278723000144
  9. doi:10.1016/j.egycc.2021.100046. URL https://www.sciencedirect.com/science/article/pii/S2666278721000234
  10. doi:10.1109/TPWRS.2021.3104768.
  11. doi:10.1063/5.0061813. URL https://doi.org/10.1063/5.0061813
  12. doi:10.1109/PESGM.2017.8274019.
  13. doi:10.1016/j.rser.2019.06.002. URL https://www.sciencedirect.com/science/article/pii/S1364032119303879
  14. doi:10.3390/en13030641. URL https://www.mdpi.com/1996-1073/13/3/641
  15. doi:10.1016/j.rser.2021.110857. URL https://www.sciencedirect.com/science/article/pii/S1364032121001519
  16. doi:10.1109/PESGM.2016.7741996.
  17. doi:10.1016/j.apenergy.2022.119022. URL https://www.sciencedirect.com/science/article/pii/S0306261922004275
  18. doi:10.1109/EESAT55007.2022.9998031.
  19. doi:10.1016/j.joule.2023.02.006. URL https://www.sciencedirect.com/science/article/pii/S2542435123000752
  20. doi:10.1016/j.joule.2020.07.007. URL https://www.sciencedirect.com/science/article/pii/S2542435120303251
  21. doi:10.1137/141000671. URL https://epubs.siam.org/doi/10.1137/141000671
  22. doi:10.5281/zenodo.6984498. URL https://zenodo.org/record/6984498
  23. doi:10.2172/1459351. URL http://www.osti.gov/servlets/purl/1459351/
  24. U. E. I. Administration, EIA Form 860 (Sep. 2023). URL https://www.eia.gov/electricity/data/eia860/
  25. doi:10.1016/j.energy.2023.128133. URL https://www.sciencedirect.com/science/article/pii/S036054422301527X
  26. doi:10.1016/j.apenergy.2021.116726. URL https://www.sciencedirect.com/science/article/pii/S0306261921002439
  27. doi:10.1016/j.joule.2018.11.013. URL https://linkinghub.elsevier.com/retrieve/pii/S2542435118305622
  28. doi:10.1016/j.apenergy.2017.03.051. URL https://www.sciencedirect.com/science/article/pii/S0306261917302775
  29. doi:10.46855/energy-proceedings-10473. URL https://www.energy-proceedings.org/?p=10473
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube