Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Unified Label-Aware Contrastive Learning Framework for Few-Shot Named Entity Recognition (2404.17178v2)

Published 26 Apr 2024 in cs.CL

Abstract: Few-shot Named Entity Recognition (NER) aims to extract named entities using only a limited number of labeled examples. Existing contrastive learning methods often suffer from insufficient distinguishability in context vector representation because they either solely rely on label semantics or completely disregard them. To tackle this issue, we propose a unified label-aware token-level contrastive learning framework. Our approach enriches the context by utilizing label semantics as suffix prompts. Additionally, it simultaneously optimizes context-context and context-label contrastive learning objectives to enhance generalized discriminative contextual representations.Extensive experiments on various traditional test domains (OntoNotes, CoNLL'03, WNUT'17, GUM, I2B2) and the large-scale few-shot NER dataset (FEWNERD) demonstrate the effectiveness of our approach. It outperforms prior state-of-the-art models by a significant margin, achieving an average absolute gain of 7% in micro F1 scores across most scenarios. Further analysis reveals that our model benefits from its powerful transfer capability and improved contextual representations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: