Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fuzzing MLIR Compilers with Custom Mutation Synthesis (2404.16947v2)

Published 25 Apr 2024 in cs.SE

Abstract: Compiler technologies in deep learning and domain-specific hardware acceleration are increasingly adopting extensible compiler frameworks such as Multi-Level Intermediate Representation (MLIR) to facilitate more efficient development. With MLIR, compiler developers can easily define their own custom IRs in the form of MLIR dialects. However, the diversity and rapid evolution of such custom IRs make it impractical to manually write a custom test generator for each dialect. To address this problem, we design a new test generator called SYNTHFUZZ that combines grammar-based fuzzing with custom mutation synthesis. The key essence of SYNTHFUZZ is two fold: (1) It automatically infers parameterized context-dependent custom mutations from existing test cases. (2) It then concretizes the mutation's content depending on the target context and reduces the chance of inserting invalid edits by performing k-ancestor and pre(post)fix matching. SYNTHFUZZ obviates the need to manually define custom mutation operators for each dialect. We compare SYNTHFUZZ to three baselines: Grammarinator, MLIRSmith, and NeuRI. We conduct this comprehensive comparison on four different MLIR projects. Each project defines a new set of MLIR dialects where manually writing a custom test generator would take weeks of effort. Our evaluation shows that SYNTHFUZZ on average improves MLIR dialect pair coverage by 1.75 times, which increases branch coverage by 1.22 times. Further, we show that our context dependent custom mutation increases the proportion of valid tests by up to 1.11 times, indicating that SYNTHFUZZ correctly concretizes its parameterized mutations with respect to the target context. Parameterization of the mutations reduces the fraction of tests violating the base MLIR constraints by 0.57 times, increasing the time spent fuzzing dialect-specific code.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com