Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Atomas: Hierarchical Alignment on Molecule-Text for Unified Molecule Understanding and Generation (2404.16880v3)

Published 23 Apr 2024 in q-bio.QM, cs.AI, and cs.CL

Abstract: Molecule-and-text cross-modal representation learning has emerged as a promising direction for enhancing the quality of molecular representation, thereby improving performance in various scientific fields. However, most approaches employ a global alignment approach to learn the knowledge from different modalities that may fail to capture fine-grained information, such as molecule-and-text fragments and stereoisomeric nuances, which is crucial for downstream tasks. Furthermore, it is incapable of modeling such information using a similar global alignment strategy due to the lack of annotations about the fine-grained fragments in the existing dataset. In this paper, we propose Atomas, a hierarchical molecular representation learning framework that jointly learns representations from SMILES strings and text. We design a Hierarchical Adaptive Alignment model to automatically learn the fine-grained fragment correspondence between two modalities and align these representations at three semantic levels. Atomas's end-to-end training framework supports understanding and generating molecules, enabling a wider range of downstream tasks. Atomas achieves superior performance across 12 tasks on 11 datasets, outperforming 11 baseline models thus highlighting the effectiveness and versatility of our method. Scaling experiments further demonstrate Atomas's robustness and scalability. Moreover, visualization and qualitative analysis, validated by human experts, confirm the chemical relevance of our approach. Codes are released on https://github.com/yikunpku/Atomas.

Citations (3)

Summary

We haven't generated a summary for this paper yet.