Papers
Topics
Authors
Recent
2000 character limit reached

AdaQAT: Adaptive Bit-Width Quantization-Aware Training (2404.16876v1)

Published 22 Apr 2024 in cs.LG and cs.AI

Abstract: Large-scale deep neural networks (DNNs) have achieved remarkable success in many application scenarios. However, high computational complexity and energy costs of modern DNNs make their deployment on edge devices challenging. Model quantization is a common approach to deal with deployment constraints, but searching for optimized bit-widths can be challenging. In this work, we present Adaptive Bit-Width Quantization Aware Training (AdaQAT), a learning-based method that automatically optimizes weight and activation signal bit-widths during training for more efficient DNN inference. We use relaxed real-valued bit-widths that are updated using a gradient descent rule, but are otherwise discretized for all quantization operations. The result is a simple and flexible QAT approach for mixed-precision uniform quantization problems. Compared to other methods that are generally designed to be run on a pretrained network, AdaQAT works well in both training from scratch and fine-tuning scenarios.Initial results on the CIFAR-10 and ImageNet datasets using ResNet20 and ResNet18 models, respectively, indicate that our method is competitive with other state-of-the-art mixed-precision quantization approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 6 likes about this paper.