Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey (2404.16847v2)

Published 25 Feb 2024 in cs.CR and cs.AI

Abstract: This paper examines the evolving landscape of ML and its profound impact across various sectors, with a special focus on the emerging field of Privacy-preserving Machine Learning (PPML). As ML applications become increasingly integral to industries like telecommunications, financial technology, and surveillance, they raise significant privacy concerns, necessitating the development of PPML strategies. The paper highlights the unique challenges in safeguarding privacy within ML frameworks, which stem from the diverse capabilities of potential adversaries, including their ability to infer sensitive information from model outputs or training data. We delve into the spectrum of threat models that characterize adversarial intentions, ranging from membership and attribute inference to data reconstruction. The paper emphasizes the importance of maintaining the confidentiality and integrity of training data, outlining current research efforts that focus on refining training data to minimize privacy-sensitive information and enhancing data processing techniques to uphold privacy. Through a comprehensive analysis of privacy leakage risks and countermeasures in both centralized and collaborative learning settings, this paper aims to provide a thorough understanding of effective strategies for protecting ML training data against privacy intrusions. It explores the balance between data privacy and model utility, shedding light on privacy-preserving techniques that leverage cryptographic methods, Differential Privacy, and Trusted Execution Environments. The discussion extends to the application of these techniques in sensitive domains, underscoring the critical role of PPML in ensuring the privacy and security of ML systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com