Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Tverberg's theorem and multi-class support vector machines (2404.16724v1)

Published 25 Apr 2024 in cs.LG

Abstract: We show how, using linear-algebraic tools developed to prove Tverberg's theorem in combinatorial geometry, we can design new models of multi-class support vector machines (SVMs). These supervised learning protocols require fewer conditions to classify sets of points, and can be computed using existing binary SVM algorithms in higher-dimensional spaces, including soft-margin SVM algorithms. We describe how the theoretical guarantees of standard support vector machines transfer to these new classes of multi-class support vector machines. We give a new simple proof of a geometric characterization of support vectors for largest margin SVMs by Veelaert.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube