Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributed Model Predictive Control for Piecewise Affine Systems Based on Switching ADMM (2404.16712v3)

Published 25 Apr 2024 in math.OC, cs.SY, and eess.SY

Abstract: This paper presents a novel approach for distributed model predictive control (MPC) for piecewise affine (PWA) systems. Existing approaches rely on solving mixed-integer optimization problems, requiring significant computation power or time. We propose a distributed MPC scheme that requires solving only convex optimization problems. The key contribution is a novel method, based on the alternating direction method of multipliers, for solving the non-convex optimal control problem that arises due to the PWA dynamics. We present a distributed MPC scheme, leveraging this method, that explicitly accounts for the coupling between subsystems by reaching agreement on the values of coupled states. Stability and recursive feasibility are shown under additional assumptions on the underlying system. Two numerical examples are provided, in which the proposed controller is shown to significantly improve the CPU time and closed-loop performance over existing state-of-the-art approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.