Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Distributed Model Predictive Control for Piecewise Affine Systems Based on Switching ADMM (2404.16712v3)

Published 25 Apr 2024 in math.OC, cs.SY, and eess.SY

Abstract: This paper presents a novel approach for distributed model predictive control (MPC) for piecewise affine (PWA) systems. Existing approaches rely on solving mixed-integer optimization problems, requiring significant computation power or time. We propose a distributed MPC scheme that requires solving only convex optimization problems. The key contribution is a novel method, based on the alternating direction method of multipliers, for solving the non-convex optimal control problem that arises due to the PWA dynamics. We present a distributed MPC scheme, leveraging this method, that explicitly accounts for the coupling between subsystems by reaching agreement on the values of coupled states. Stability and recursive feasibility are shown under additional assumptions on the underlying system. Two numerical examples are provided, in which the proposed controller is shown to significantly improve the CPU time and closed-loop performance over existing state-of-the-art approaches.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: