Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the Streaming Complexity of Expander Decomposition (2404.16701v2)

Published 25 Apr 2024 in cs.DS

Abstract: In this paper we study the problem of finding $(\epsilon, \phi)$-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a $\phi$-expander, while the number of inter-cluster edges is only an $\epsilon$ fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a $(O(\phi \log n), \phi)$-expander decomposition of an $n$-vertex graph using $\widetilde{O}(n/\phi2)$ bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter $\phi$ is inherent. We move towards answering this question on two fronts. We prove that a $(O(\phi \log n), \phi)$-expander decomposition can be found using $\widetilde{O}(n)$ space, for every $\phi$. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of $\phi$, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of $(O(\phi \log n), \phi)$-expander decompositions requires ${\widetilde{\Omega}}(n/\phi)$ bits of space, even in insertion only streams.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube