Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Computing Hamiltonian Paths with Partial Order Restrictions (2404.16662v3)

Published 25 Apr 2024 in cs.DM, cs.CC, cs.DS, and math.CO

Abstract: When solving the Hamiltonian path problem it seems natural to be given additional precedence constraints for the order in which the vertices are visited. For example one could decide whether a Hamiltonian path exists for a fixed starting point, or that some vertices are visited before another vertex. We consider the problem of finding a Hamiltonian path that observes all precedence constraints given in a partial order on the vertex set. We show that this problem is $\mathsf{NP}$-complete even if restricted to complete bipartite graphs and posets of height 2. In contrast, for posets of width $k$ there is a known $\mathcal{O}(k2 nk)$ algorithm for arbitrary graphs with $n$ vertices. We show that it is unlikely that the running time of this algorithm can be improved significantly, i.e., there is no $f(k) n{o(k)}$ time algorithm under the assumption of the Exponential Time Hypothesis. Furthermore, for the class of outerplanar graphs, we give an $\mathcal{O}(n2)$ algorithm for arbitrary posets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.