Papers
Topics
Authors
Recent
2000 character limit reached

Stokes-Brinkman-Darcy models for fluid-porous systems: derivation, analysis and validation (2404.16577v1)

Published 25 Apr 2024 in math.NA and cs.NA

Abstract: Flow interaction between a plain-fluid region in contact with a porous layer attracted significant attention from modelling and analysis sides due to numerous applications in biology, environment and industry. In the most widely used coupled model, fluid flow is described by the Stokes equations in the free-flow domain and Darcy's law in the porous medium, and complemented by the appropriate interface conditions. However, traditional coupling concepts are restricted, with a few exceptions, to one-dimensional flows parallel to the fluid-porous interface. In this work, we use an alternative approach to model interaction between the plain-fluid domain and porous medium by considering a transition zone, and propose the full- and hybrid-dimensional Stokes-Brinkman-Darcy models. In the first case, the equi-dimensional Brinkman equations are considered in the transition region, and the appropriate interface conditions are set on the top and bottom of the transition zone. In the latter case, we perform a dimensional model reduction by averaging the Brinkman equations in the normal direction and using the proposed transmission conditions. The well-posedness of both coupled problems is proved, and some numerical simulations are carried out in order to validate the concepts.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.