Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ReliK: A Reliability Measure for Knowledge Graph Embeddings (2404.16572v1)

Published 25 Apr 2024 in cs.SI

Abstract: Can we assess a priori how well a knowledge graph embedding will perform on a specific downstream task and in a specific part of the knowledge graph? Knowledge graph embeddings (KGEs) represent entities (e.g., "da Vinci," "Mona Lisa") and relationships (e.g., "painted") of a knowledge graph (KG) as vectors. KGEs are generated by optimizing an embedding score, which assesses whether a triple (e.g., "da Vinci," "painted," "Mona Lisa") exists in the graph. KGEs have been proven effective in a variety of web-related downstream tasks, including, for instance, predicting relationships among entities. However, the problem of anticipating the performance of a given KGE in a certain downstream task and locally to a specific individual triple, has not been tackled so far. In this paper, we fill this gap with ReliK, a Reliability measure for KGEs. ReliK relies solely on KGE embedding scores, is task- and KGE-agnostic, and requires no further KGE training. As such, it is particularly appealing for semantic web applications which call for testing multiple KGE methods on various parts of the KG and on each individual downstream task. Through extensive experiments, we attest that ReliK correlates well with both common downstream tasks, such as tail or relation prediction and triple classification, as well as advanced downstream tasks, such as rule mining and question answering, while preserving locality.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube