Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cross-Domain Spatial Matching for Camera and Radar Sensor Data Fusion in Autonomous Vehicle Perception System (2404.16548v1)

Published 25 Apr 2024 in cs.CV

Abstract: In this paper, we propose a novel approach to address the problem of camera and radar sensor fusion for 3D object detection in autonomous vehicle perception systems. Our approach builds on recent advances in deep learning and leverages the strengths of both sensors to improve object detection performance. Precisely, we extract 2D features from camera images using a state-of-the-art deep learning architecture and then apply a novel Cross-Domain Spatial Matching (CDSM) transformation method to convert these features into 3D space. We then fuse them with extracted radar data using a complementary fusion strategy to produce a final 3D object representation. To demonstrate the effectiveness of our approach, we evaluate it on the NuScenes dataset. We compare our approach to both single-sensor performance and current state-of-the-art fusion methods. Our results show that the proposed approach achieves superior performance over single-sensor solutions and could directly compete with other top-level fusion methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. doi:10.1109/TELFOR.2018.8612054.
  2. doi:10.3390/s22072542. URL https://www.mdpi.com/1424-8220/22/7/2542
  3. doi:10.1109/ICIF.2010.5712116.
  4. doi:10.1109/JSTQE.2020.3022948.
  5. doi:10.1109/CVPR42600.2020.01164.
  6. doi:10.1109/CVPR.2016.91.
  7. doi:10.1109/CVPR.2017.690.
  8. arXiv:1804.02767. URL http://arxiv.org/abs/1804.02767
  9. arXiv:2004.10934. URL https://arxiv.org/abs/2004.10934
  10. doi:10.1109/CVPR.2018.00913.
  11. arXiv:1807.06521. URL http://arxiv.org/abs/1807.06521
  12. arXiv:1911.08287. URL http://arxiv.org/abs/1911.08287
  13. doi:10.1109/ICCV.2017.324.
  14. arXiv:1905.11946. URL http://arxiv.org/abs/1905.11946
  15. doi:10.1109/CVPR42600.2020.01079.
  16. arXiv:2104.00298. URL https://arxiv.org/abs/2104.00298
  17. arXiv:1707.06484. URL http://arxiv.org/abs/1707.06484
  18. doi:10.1109/ICCV.2019.00667.
  19. doi:10.1109/ICCVW54120.2021.00107.
  20. doi:10.1109/CVPR.2017.16.
  21. doi:10.1109/CVPR.2019.00086.
  22. doi:10.1109/CVPR.2018.00472.
  23. doi:10.1109/CVPR.2019.01298.
  24. doi:10.1109/CVPR42600.2020.01054.
  25. arXiv:2209.14499, doi:10.48550/arXiv.2209.14499. URL https://doi.org/10.48550/arXiv.2209.14499
  26. doi:10.1109/IROS.2018.8594049.
  27. doi:10.1109/CVPR.2017.691.
  28. doi:10.1109/CVPR.2018.00033.
  29. doi:10.1109/CVPR42600.2020.00466.
  30. doi:10.1109/CVPRW.2019.00162.
  31. doi:10.1016/j.robot.2018.11.002.
  32. doi:10.1109/IVS.2018.8500549.
  33. doi:10.1109/SDF.2019.8916629.
  34. doi:10.1109/WACV48630.2021.00157.
  35. doi:10.1109/ICCV.2017.74.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: