Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tightening I/O Lower Bounds through the Hourglass Dependency Pattern (2404.16443v1)

Published 25 Apr 2024 in cs.CC and cs.DC

Abstract: When designing an algorithm, one cares about arithmetic/computational complexity, but data movement (I/O) complexity plays an increasingly important role that highly impacts performance and energy consumption. For a given algorithm and a given I/O model, scheduling strategies such as loop tiling can reduce the required I/O down to a limit, called the I/O complexity, inherent to the algorithm itself. The objective of I/O complexity analysis is to compute, for a given program, its minimal I/O requirement among all valid schedules. We consider a sequential execution model with two memories, an infinite one, and a small one of size S on which the computations retrieve and produce data. The I/O is the number of reads and writes between the two memories. We identify a common "hourglass pattern" in the dependency graphs of several common linear algebra kernels. Using the properties of this pattern, we mathematically prove tighter lower bounds on their I/O complexity, which improves the previous state-of-the-art bound by a parametric ratio. This proof was integrated inside the IOLB automatic lower bound derivation tool.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: