Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tightening I/O Lower Bounds through the Hourglass Dependency Pattern (2404.16443v1)

Published 25 Apr 2024 in cs.CC and cs.DC

Abstract: When designing an algorithm, one cares about arithmetic/computational complexity, but data movement (I/O) complexity plays an increasingly important role that highly impacts performance and energy consumption. For a given algorithm and a given I/O model, scheduling strategies such as loop tiling can reduce the required I/O down to a limit, called the I/O complexity, inherent to the algorithm itself. The objective of I/O complexity analysis is to compute, for a given program, its minimal I/O requirement among all valid schedules. We consider a sequential execution model with two memories, an infinite one, and a small one of size S on which the computations retrieve and produce data. The I/O is the number of reads and writes between the two memories. We identify a common "hourglass pattern" in the dependency graphs of several common linear algebra kernels. Using the properties of this pattern, we mathematically prove tighter lower bounds on their I/O complexity, which improves the previous state-of-the-art bound by a parametric ratio. This proof was integrated inside the IOLB automatic lower bound derivation tool.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.