Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring the limitations of blood pressure estimation using the photoplethysmography signal (2404.16049v1)

Published 9 Apr 2024 in physics.med-ph, cs.CV, cs.LG, eess.IV, and eess.SP

Abstract: Hypertension, a leading contributor to cardiovascular morbidity, underscores the need for accurate and continuous blood pressure (BP) monitoring. Photoplethysmography (PPG) presents a promising approach to this end. However, the precision of BP estimates derived from PPG signals has been the subject of ongoing debate, necessitating a comprehensive evaluation of their effectiveness and constraints. We developed a calibration-based Siamese ResNet model for BP estimation, using a signal input paired with a reference BP reading. We compared the use of normalized PPG (N-PPG) against the normalized Invasive Arterial Blood Pressure (N-IABP) signals as input. The N-IABP signals do not directly present systolic and diastolic values but theoretically provide a more accurate BP measure than PPG signals since it is a direct pressure sensor inside the body. Our strategy establishes a critical benchmark for PPG performance, realistically calibrating expectations for PPG's BP estimation capabilities. Nonetheless, we compared the performance of our models using different signal-filtering conditions to evaluate the impact of filtering on the results. We evaluated our method using the AAMI and the BHS standards employing the VitalDB dataset. The N-IABP signals meet with AAMI standards for both Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP), with errors of 1.29+-6.33mmHg for systolic pressure and 1.17+-5.78mmHg for systolic and diastolic pressure respectively for the raw N-IABP signal. In contrast, N-PPG signals, in their best setup, exhibited inferior performance than N-IABP, presenting 1.49+-11.82mmHg and 0.89+-7.27mmHg for systolic and diastolic pressure respectively. Our findings highlight the potential and limitations of employing PPG for BP estimation, showing that these signals contain information correlated to BP but may not be sufficient for predicting it accurately.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: