2000 character limit reached
Telco-RAG: Navigating the Challenges of Retrieval-Augmented Language Models for Telecommunications (2404.15939v3)
Published 24 Apr 2024 in cs.IR and eess.SP
Abstract: The application of LLMs and Retrieval-Augmented Generation (RAG) systems in the telecommunication domain presents unique challenges, primarily due to the complex nature of telecom standard documents and the rapid evolution of the field. The paper introduces Telco-RAG, an open-source RAG framework designed to handle the specific needs of telecommunications standards, particularly 3rd Generation Partnership Project (3GPP) documents. Telco-RAG addresses the critical challenges of implementing a RAG pipeline on highly technical content, paving the way for applying LLMs in telecommunications and offering guidelines for RAG implementation in other technical domains.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems (NIPS), 2017, pp. 5998–6008.
- A. Maatouk, N. Piovesan, F. Ayed, A. De Domenico, M. Debbah, “Large Language Models for Telecom: Forthcoming Impact on the Industry,” arXiv preprint arXiv:2308.06013, 2024.
- A. Maatouk, F. Ayed, N. Piovesan, A. De Domenico, M. Debbah, and Z.-Q. Luo, “TeleQnA: A Benchmark Dataset to Assess Large Language Models Telecommunications Knowledge,” arXiv preprint arXiv:2310.15051, 2023.
- N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computational limits of deep learning,” arXiv preprint arXiv:2007.05558, 2020.
- O. Ovadia, M. Brief, M. Mishaeli, and O. Elisha, “Fine-Tuning or Retrieval? Comparing Knowledge Injection in LLMs,” arXiv preprint arXiv:2312.05934, 2024.
- A. Balaguer, V. Benara, R. Cunha, R. Estevão, T. Hendry, D. Holstein, J. Marsman, N. Mecklenburg, S. Malvar, L. O. Nunes et al., “RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture,” arXiv preprint arXiv:2401.08406, 2024.
- N. Piovesan, A. De Domenico, and F. Ayed, “Telecom language models: Must they be large?” arXiv preprint arXiv:2403.04666, 2024.
- LlamaIndex, “Evaluating the Ideal Chunk Size for a RAG System Using LlamaIndex,” LlamaIndex Blog, 2024. [Online]. Available: https://www.llamaindex.ai/blog/evaluating-the-ideal-chunk-size-for-a-rag-system-using-llamaindex-6207e5d3fec5
- P. Finardi, L. Avila, R. Castaldoni, P. Gengo, C. Larcher, M. Piau, P. Costa, and V. Caridá, “The Chronicles of RAG: The Retriever, the Chunk and the Generator,” arXiv preprint arXiv:2401.07883, 2024.
- C.-M. Chan, C. Xu, R. Yuan, H. Luo, W. Xue, Y. Guo, and J. Fu, “RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation,” in arXiv preprint arXiv:2404.00610, 2024.
- Banghao Chen, Zhaofeng Zhang, Nicolas Langren, Shengxin Zhu, “Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review,” arXiv preprint arXiv:2310.14735, 2023.
- S. Siriwardhana, R. Weerasekera, E. Wen, T. Kaluarachchi, R. Rana, and S. Nanayakkara, “Improving the Domain Adaptation of Retrieval Augmented Generation (RAG) Models for Open Domain Question Answering,” Transactions of the Association for Computational Linguistics, vol. 11, pp. 1–17, 01 2023.
- J. Johnson, M. Douze, and H. Jégou, “Faiss: Facebook ai similarity search,” https://github.com/facebookresearch/faiss, 2017.
- 3GPP TSG SA, “TR 21.905, Vocabulary for 3GPP Specifications,” V17.2.0, March 2024.
- 3GPP, “Specifications by series.” [Online]. Available: https://www.3gpp.org/specifications-technologies/specifications-by-series
- F. Gilardi, M. Alizadeh, and M. Kubli, “ChatGPT Outperforms Crowd-Workers for Text-Annotation Tasks,” Proceedings of the National Academy of Sciences, vol. 120, no. 30, 2023.
- J. Gao, M. Galley, and L. Li, “Neural Approaches to Conversational AI,” in Annual Meeting of the Association for Computational Linguistics (ACL): Tutorial Abstracts, 2019.
- OpenAI, “New embedding models and api updates,” https://openai.com/blog/new-embedding-models-and-api-updates, 2023, accessed: 2024-04-18.
- A. Kusupati, G. Bhatt, A. Rege, M. Wallingford, A. Sinha, V. Ramanujan, W. Howard-Snyder, K. Chen, S. Kakade, P. Jain, and A. Farhadi, “Matryoshka Representation Learning,” in Advances in Neural Information Processing Systems (NeurIPS), 2022.