Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Generalization of Relative Entropy to Count Vectors and its Concentration Property (2404.15867v2)

Published 24 Apr 2024 in cs.IT and math.IT

Abstract: We introduce a new generalization of relative entropy to non-negative vectors with sums $\gt 1$. We show in a purely combinatorial setting, with no probabilistic considerations, that in the presence of linear constraints defining a convex polytope, a concentration phenomenon arises for this generalized relative entropy, and we quantify the concentration precisely. We also present a probabilistic formulation, and extend the concentration results to it. In addition, we provide a number of simplifications and improvements to our previous work, notably in dualizing the optimization problem, in the concentration with respect to $\ell_{\infty}$ distance, and in the relationship to generalized KL-divergence. A number of our results apply to general compact convex sets, not necessarily polyhedral.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: