Emergent Mind

Abstract

It is well-known that extending the Hilbert axiomatic system for first-order intuitionistic logic with an exclusion operator, that is dual to implication, collapses the domains in the model into a constant domain. This makes it a very challenging problem to find a sound and complete proof system for first-order bi-intuitionistic logic with non-constant domains, that is also conservative over first-order intuitionistic logic. We solve this problem by presenting the first sound and complete proof system for first-order bi-intuitionistic logic with increasing domains. We formalize our proof system in a labeled polytree sequent calculus (a notational variant of nested sequents), and prove that it enjoys cut-elimination and is conservative over first-order intuitionistic logic. A key feature of our calculus is an explicit eigenvariable context, which allows us to control precisely the scope of free variables in a polytree structure. Semantically this context can be seen as encoding a notion of Scott's existence predicate for intuitionistic logic. This turns out to be crucial to avoid the collapse of domains and to prove the completeness of our proof system. The explicit consideration of the variable context in a formula sheds light on a previously overlooked dependency between the residuation principle and the existence predicate in the first-order setting, that may help explain the difficulty in obtaining a complete proof system for first-order bi-intuitionistic logic.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.