Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Collaborative Heterogeneous Causal Inference Beyond Meta-analysis (2404.15746v1)

Published 24 Apr 2024 in stat.ML, cs.CR, and cs.LG

Abstract: Collaboration between different data centers is often challenged by heterogeneity across sites. To account for the heterogeneity, the state-of-the-art method is to re-weight the covariate distributions in each site to match the distribution of the target population. Nevertheless, this method could easily fail when a certain site couldn't cover the entire population. Moreover, it still relies on the concept of traditional meta-analysis after adjusting for the distribution shift. In this work, we propose a collaborative inverse propensity score weighting estimator for causal inference with heterogeneous data. Instead of adjusting the distribution shift separately, we use weighted propensity score models to collaboratively adjust for the distribution shift. Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases. To account for the vulnerable density estimation, we further discuss the double machine method and show the possibility of using nonparametric density estimation with d<8 and a flexible machine learning method to guarantee asymptotic normality. We propose a federated learning algorithm to collaboratively train the outcome model while preserving privacy. Using synthetic and real datasets, we demonstrate the advantages of our method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: